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Complex networks reveal global pattern of  
extreme-rainfall teleconnections
Niklas Boers1,2*, Bedartha Goswami2,7, Aljoscha rheinwalt3,7, Bodo Bookhagen3, Brian Hoskins1,4 & Jürgen Kurths2,5,6

Climatic observables are often correlated across long spatial 
distances, and extreme events, such as heatwaves or floods, 
are typically assumed to be related to such teleconnections1,2. 
Revealing atmospheric teleconnection patterns and understanding 
their underlying mechanisms is of great importance for weather 
forecasting in general and extreme-event prediction in particular3,4, 
especially considering that the characteristics of extreme events have 
been suggested to change under ongoing anthropogenic climate 
change5–8. Here we reveal the global coupling pattern of extreme-
rainfall events by applying complex-network methodology to high-
resolution satellite data and introducing a technique that corrects 
for multiple-comparison bias in functional networks. We find that 
the distance distribution of significant connections (P < 0.005) 
around the globe decays according to a power law up to distances 
of about 2,500 kilometres. For longer distances, the probability 
of significant connections is much higher than expected from 
the scaling of the power law. We attribute the shorter, power-law-
distributed connections to regional weather systems. The longer, 
super-power-law-distributed connections form a global rainfall 
teleconnection pattern that is probably controlled by upper-level 
Rossby waves. We show that extreme-rainfall events in the monsoon 
systems of south-central Asia, east Asia and Africa are significantly 
synchronized. Moreover, we uncover concise links between south-
central Asia and the European and North American extratropics, 
as well as the Southern Hemisphere extratropics. Analysis of the 
atmospheric conditions that lead to these teleconnections confirms 
Rossby waves as the physical mechanism underlying these global 
teleconnection patterns and emphasizes their crucial role in 
dynamical tropical–extratropical couplings. Our results provide 
insights into the function of Rossby waves in creating stable, global-
scale dependencies of extreme-rainfall events, and into the potential 
predictability of associated natural hazards.

Using the framework of complex networks, we present an analysis 
of the spatial configuration of significant synchronizations between 
extreme-rainfall events (EREs) around the globe. Our analysis is based 
on the quasi-global, high-resolution satellite product Tropical Rainfall 
Measurement Mission (TRMM) 3B42 (see Methods section ‘Data’). We 
define EREs locally as days with rainfall sums above the 95th percentile 
of wet days; events occurring on consecutive days are counted as single 
events and placed on the first day of occurrence (Fig. 1; see Methods 
section ‘Data’). Typically, EREs do not occur as isolated events, but 
are associated with spatio-temporally organized weather patterns9. 
Depending on the relevant atmospheric mechanisms, this can lead 
to synchronizations between EREs at remote locations, as has been 
shown so far only on regional scales10–12. Revealing and explaining 
global ERE synchronization patterns, and in particular their spatial 
scales, is important for our understanding of the governing atmos-
pheric processes. Advances in this regard have a key role in assessing 
the predictability of EREs and associated natural hazards11, as well as 
for evaluating their representation in climate models12. In addition, 
better insights into the global coupling structure of extreme events are 

crucial for estimating how anthropogenic climate change may alter the 
dynamical characteristics of EREs6,7.

We quantify the synchronicity of rainfall events using event syn-
chronization (Methods section ‘Event synchronization’). According 
to this measure, highly significant synchronizations (with a maximum 
delay of ten days) are represented as a network comprising 576,000 
nodes, corresponding to the total number of spatial grid cells of the 
TRMM dataset. Network links are placed between two nodes if the 
corresponding synchronization values are significant, with P < 0.005 
(see Methods sections ‘Functional networks’ and ‘Significance of event 
synchronization and network construction’).

A quantity of particular interest is the global distribution of the spa-
tial distances across which significant synchronizations occur (Fig. 2). 
This distribution decays as the power law p(d) ∝ d−α, with an exponent 
α very close to 1 for distances d below about 2,500 km, but exhibits 
super-power-law behaviour for longer distances. The scale-break at 
2,500 km indicates that links representing significant synchroniza-
tions can be grouped into two distinct classes: first, links associated 
with regional weather systems with distances up to 2,500 km, which 
include mesoscale convective systems and tropical cyclones; second, 
links associated with global-scale teleconnections. Such teleconnections 
are generally understood to be caused either by direct signal transport 
due to atmospheric circulations or by propagating waves triggered by 
disturbances of these circulations13. From a statistical point of view, 
these global-scale teleconnections are remarkable because they are, as 
revealed here, far more likely than expected from the scaling regime of 
the shorter connections. Their existence can thus not be predicted from 
the scaling of the shorter links. Such instances have been referred to as 
‘dragon kings’, and their occurrence is typically interpreted as a switch 
to a different physical regime14,15. They follow closely the distribution of 
all possible great-circle distances on Earth’s surface, and their distances 
are hence restricted only by spatial embedding.

To elucidate the atmospheric processes leading to the global-scale 
rainfall teleconnections, we focus on the teleconnections associated with 
EREs in south-central Asia (SCA; Fig. 3), including parts of northern  
India, eastern Pakistan, Nepal and Tibet. This regional example is  
chosen because of its particular vulnerability to EREs and associated 
severe, record-breaking flood events, as occurred in each monsoon 
season from 2010 to 20143,4,8,16,17.

Before proceeding, however, a statistical problem needs to be solved, 
which arises in all data-driven interdependency analyses, and in  
particular in networks that are constructed on the basis of statistical 
similarities. Such approaches are generally biased because of multiple 
comparisons. In this case, we compare each timeseries with 575,999 
other timeseries, which amounts to more than 1011 comparisons in 
total. Therefore, the network will contain links that—despite corre-
sponding to statistically significant pairwise synchronization values—
are present only because of random coincidences, and not because 
of physical mechanisms. Correspondingly, the spatial distribution 
of network links connected to SCA does not convey any meaningful 
information (Fig. 3a). We introduce here a technique to correct for the 
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multiple-comparison bias in spatially embedded functional networks, 
based on spatial density estimation to identify statistically significant 
(P < 0.001) spatial link bundles. Links that are not part of significant 
spatial bundles are then removed to extract the physically meaningful 
couplings (Fig. 3b, Extended Data Fig. 1; Methods section ‘Significance 
of spatial patterns’).

After applying our correction technique, a concise teleconnection 
pattern associated with the northern part of the South Asian monsoon 
is revealed: in addition to regional links covering most of the Indian 
subcontinent, we observe pronounced link bundles connecting SCA 
with eastern Asia, the African tropics, large parts of Europe and the 
eastern coast of North America, as well as the Southern Hemisphere 
extratropics. The break between regional and teleconnection scales 
(Fig. 2) is not affected by this correction (Extended Data Fig. 2).

Synchronizations between EREs in the tropical monsoon systems 
of Africa, India and eastern Asia can be understood, to a first approx-
imation, in the context of the global monsoon, which affects all these 
regions and dominates during June, July and August18. We proceed with 
an analysis of the synchronizations between EREs in SCA and Europe. 
From a lead–lag correlation analysis of timeseries obtained by spatially 
averaging the numbers of EREs in both regions, we obtain an oscillatory 
pattern with a period of approximately 9 days: EREs in Europe lead 
EREs in SCA by 4–5 days, but EREs in Europe also lag EREs in SCA by 
4–5 days, and therefore a one-sided causal relationship cannot easily 
be inferred (Fig. 4a). This oscillatory behaviour, with a period of about 
9 days, and the phase shift of 4–5 days between Europe and SCA are 
consistent with a case study of the severe flood4 in northern Pakistan 
in July 2010 (compare Fig. 4a with figure 7 in ref. 4).

To investigate the relationship between EREs in SCA and Europe 
in more detail, we compute composite anomalies of rainfall and 
meridional wind speeds (v) for the specific times during which EREs 
occur synchronously in Europe and SCA (Fig. 4; Methods section 
‘Identification of specific times with high synchronization’). The cor-
responding anomalies of further atmospheric variables are shown in 

Extended Data Fig. 3. The anomalies show that EREs in Europe are 
caused by Rossby waves originating from the mid-latitude Atlantic 
region. Subsequently, these waves amplify the Eurasian wave train 
and thereby enhance the upper-level anti-cyclone over the Tibetan  
plateau. This leads to enhanced EREs in SCA, but also strengthens the 
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Fig. 1 | Percentiles and total numbers of extreme-rainfall events.  
a, Values of the 95th percentile of daily rainfall values for the June–July–
August (JJA) season, computed individually for each of the 576,000 
timeseries obtained from the 0.25° × 0.25° grid cells of the TRMM dataset. 

b, Total number of events above the threshold of the 95th percentile shown 
in a. Consecutive days with rainfall above the threshold are considered as 
single events. Hatched areas indicate regions with fewer than three events 
in total, which are excluded from the analysis.

101 102 103 104 105

Distance (km)

10–6

10–5

10–4

10–3

10–2

P
D

F

Distance histogram (d ≤ 2,500 km)

Distance histogram (d > 2,500 km)

Power-law �t,  = 0.985

Great-circle KDE

Fig. 2 | Distance distribution of extreme-event synchronizations. 
Probability density function (PDF) for the link distances (red and blue 
circles), the power-law fit for the range 100–2,500 km (dashed black line) 
and the kernel density estimate (KDE) of the distribution of all possible 
great-circle distances (solid black line) for events above the 95th percentile. 
The distributions are plotted on a log–log scale. The distribution of great-
circle distances is inferred from a KDE of all possible great-circle distances 
between the 576,000 grid cells. The power-law exponent α implies that 
for distances d smaller than 2,500 km, their distribution is approximately 
proportional to d−1. The vertical line at d = 2,500 km marks the regime 
shift from regional weather systems to large-scale teleconnections. For 
small distances (below about 100 km), the distribution is biased by the 
finite resolution of the 0.25° × 0.25° grid, with smaller geographical 
distances between grid cells closer to the poles. Results are shown for 
the JJA season, but are very similar in the December–January–February 
season (Extended Data Fig. 5).
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upper-level high over eastern Asia, leading to synchronous EREs in the 
Yellow River basin (Figs. 3b, 4c).

Our results corroborate earlier studies on connections between the 
Eurasian wave train and the Indian summer monsoon4,19 in terms of 
the ‘Silk Road teleconnection’20 and the ‘circumglobal teleconnection’ 
over the Northern Hemisphere21, and demonstrate that statistically 
significant synchronizations between EREs across long spatial scales 
arise from these patterns. From the lead–lag correlation analysis we also 
infer a relationship between EREs in SCA and Europe in the opposite 
temporal direction. This is possibly related to the strengthening of the 
anti-cyclone over the Tibetan plateau, which, it has been argued, can 
enhance the amplitudes of the Rossby wave train upstream22, thereby 
potentially triggering EREs in Europe.

The link bundles connecting SCA with the eastern coast of North 
America are probably the result of a chain of mechanisms: first,  
significant link bundles exist between SCA and tropical Africa.  

In the latter region, EREs are mainly controlled by the African east-
erly waves23,24, which occasionally trigger storm systems and tropical 
cyclones that propagate across the tropical Atlantic Ocean before turn-
ing northwards, towards the Caribbean and the eastern coast of North 
America25,26. Furthermore, the link bundles extending to the Pacific 
Ocean are potentially associated with the Madden–Julian oscillation 
(MJO)27,28, and in particular its phases 1 and 2 (Extended Data Fig. 4a). 
These two MJO phases have also been suggested to be related to the 
triggering of African easterly waves29.

The fact that the global-scale teleconnections approximately follow 
the distance distribution of great circles (Fig. 2) suggests that Rossby 
waves are indeed the dominant mechanism behind these teleconnec-
tions, because these waves propagate—to first approximation—along 
great circles30. The super-power-law part of the distance distribution 
is strongly diminished if the analysis is restricted to the global tropics  
between 23.5° S and 23.5° N, whereas it remains substantial when 
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Fig. 3 | Teleconnection pattern for south-central Asia for events above 
the 95th percentile. a, Links attached to south-central Asia (SCA; 25° N 
to 32° N, 71° E to 88° E), before correcting for the multiple-comparison 
bias. b, Link bundles attached to SCA, after correcting for the multiple-
comparison bias. Links shorter (longer) than 2,500 km are shown in 
red (blue). A spherical Gaussian KDE of the regional link density, in 
combination with a null model of randomly distributed links (Extended 
Data Fig. 1), is used to determine link bundles; links that are not part of 

significant bundles (P < 0.001) are omitted (Methods section ‘Significance 
of spatial patterns’). Significant link bundles are shown by blue contours 
in units of standard deviations above the mean, as inferred from the null 
model. The black contour line delineates areas in which the regional link 
density is higher than the 99.9th percentile of the null-model distribution. 
The TRMM dataset used here ranges from 50° S to 50° N. The endpoints 
of all links lie within this latitudinal belt, even if the links appear to extend 
beyond it along their great-circle path, owing to the spherical projection.
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including the links between the tropics and the extratropics of both 
hemispheres (Extended Data Fig. 5). This suggests a dominant role of 
processes connecting extratropical and tropical atmospheric dynamics— 
such as the Rossby wave train embedded on the mid-latitude westerly 
jet stream, which causes synchronous EREs in Europe and SCA—in 
shaping the global teleconnection pattern uncovered here.

The approach presented here provides the framework for further 
investigations of rainfall teleconnections in arbitrary regions of interest.  
Whereas we focus on events above the 95th percentile, the global  
distance distribution shown in Fig. 2 remains similar across event 
thresholds ranging from the 80th to 99th percentile, with slight 
increases in the tails of the distributions for the highest percentiles. 
Moreover, the spatial teleconnection pattern shown in Fig. 3b is robust 
across this range of thresholds (Extended Data Fig. 6). Further robust-
ness tests with respect to the chosen threshold (Extended Data Fig. 7), 
the maximum delay τmax (Extended Data Fig. 8), the cutoff frequen-
cies (Extended Data Fig. 9) and the employed dataset (Extended Data 
Fig. 10) are described in Methods section ‘Robustness tests’.

In the above example, we revealed the complete rainfall telecon-
nection pattern associated with the monsoon region of SCA. Some 
of these teleconnections can be explained with reference to previous 
studies, such as those investigating connections to Europe20,21 and to 
northern China via the Silk Road pattern. Further investigations of 
the atmospheric dynamics will be needed to determine whether the 
above, rather speculative, explanation of the connections to tropical 
Africa and eastern North America via African easterly waves, as well as 

their connection to the Atlantic tropical cyclones, is valid. Although the 
teleconnections revealed here are consistent with the results of earlier 
studies on African easterly waves and their role in triggering tropi-
cal cyclones, additional investigations will be necessary to prove that 
these processes are indeed responsible. Furthermore, the mechanisms 
causing significant teleconnections between SCA and the Southern 
Hemisphere extratropics, as well as the suggested relationship with 
the MJO, will be addressed in future research.

We hope that our results will inspire further work on the predictabil-
ity of EREs arising from these large-scale teleconnection patterns and 
on their representation in weather and climate models. Many studies 
have recently raised the concern that the characteristics of extreme 
events will change under ongoing climate change. A particular chal-
lenge in this regard is the discrimination between natural variability 
and anthropogenic influences6,7. With the increasing temporal lengths 
of global, high-resolution rainfall datasets, investigating changes of the 
global rainfall teleconnection structure along the lines of this study 
should become possible in the near future.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0872-x.
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Fig. 4 | Atmospheric conditions for the teleconnection pattern between 
Europe and SCA. a, Lead–lag correlations (solid black line) of timeseries, 
obtained from spatially averaging the daily numbers of events above 
the 95th percentile in Europe (42° N to 50° N, 3° E to 15° E) and SCA 
(magenta boxes in b–e). The timeseries are low-pass-filtered with a cutoff 
period of 10 days (Methods section ‘Identification of specific times with 
high synchronization’). The blue line shows the P values of the correlations 
at each lead/lag. b, Composite anomalies of TRMM rainfall with respect 
to the JJA climatology, for days with high numbers of EREs in Europe 
that are followed by associated EREs in SCA. c, Same as b, but 3 days 

later. d, Composite anomalies of the meridional wind component v at 
250 hPa, with respect to the JJA climatology, for the same time steps as in 
b. e, Same as d, but 3 days later. The ‘Silk Road’ Rossby wave pattern20 is 
clearly visible in terms of the east–west-oriented oscillation of positive and 
negative anomalies in d and e. The wave train strengthens towards the east 
within 3 days after the initial ERE occurrence in Europe. The dominant 
wavenumber associated with this Rossby wave pattern is k = 6, determined 
from the spatial power spectral density of the latitude belt from 37.5° N  
to 47.5° N.
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MEthods
Data. We employ the gauge-calibrated, satellite-derived rainfall dataset of TRMM 
3B42 V731, with daily temporal resolution, provided on a 0.25° × 0.25° spatial grid 
ranging from 50° N to 50° S (Fig. 1) for the time period 1998–2016. Rainfall events 
of increasing strength are identified in this dataset as days with rainfall sums above 
the 80th, 81st, …, 99th percentiles of wet days (that is, days with rainfall exceeding 
1 mm) at each grid cell, for the JJA season. Consecutive days with rainfall above the 
threshold are considered as single events and placed on the first day of occurrence. 
The 576,000 grid cells and related timeseries of the TRMM dataset are associated 
with the nodes of the functional network.

To test whether the results of our study are independent of the specific data-
set (see section ‘Robustness tests’), we also employ daily data from the Global 
Precipitation Climatology Project32 (GPCP 1DD V1.2), available at a global grid 
with 1° × 1° resolution. For the composite analysis of atmospheric variables, we 
employ the NCEP/NCAR Reanalysis 1 data33.
Synchronization of extreme events. Event synchronization. Even for fixed spatial  
distances, the delay between synchronous rainfall events at different locations 
may vary in time because of varying scales of the driving atmospheric processes, 
for example, changing group or phase velocities of atmospheric waves. A suitable  
similarity measure that is capable of dealing with the technical challenges of event-
like timeseries and the additional complication of varying temporal delays between 
events is event synchronization (ES)34, which has been successfully employed to 
analyse the spatial synchronization structure of EREs on regional scales10–12,35–37.

ES is defined as follows: let the set of events above a given percentile p at grid 
cell i be denoted by μ

μ= …e{ }p
i l1, , i

, where li denotes the total number of events at 
grid cell i. Events occurring on consecutive days are counted as single events. For 
each pair of grid cells (i, j), ES counts the number of pairs of uniquely associable 
events, where uniqueness is ensured by imposing the condition that the absolute 
value of the temporal delay between any two synchronous events μ and ν, 

= −μ ν μ νt e e:i j
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maximum temporal delay between events at different locations we impose 
τmax = 10 days. We hence define ES for the pair of locations (i, j) as the number of 
event pairs (μ, ν) meeting these conditions:

∣ ∣ ∣ ∣μ ν τ τ= < ∧ ≤μ ν μ ν μ ν� �t tES : {( , ) : } (1)ij i j i j i j,
,

,
,

,
,

max

where ∣ ∣a  denotes the absolute value of a scalar quantity a, and � �M  the cardinal-
ity of a set M. We note that the original paper34 suggests normalizing ES by multi-
plying with (lilj)−1/2 to make the measure independent of the event rates in the 
timeseries at i and j. It can be shown, however, that this normalization does not 
entirely remove this bias, because for higher event rates the probability of random 
synchronizations increases37,38. We therefore omit this normalization and instead 
focus on the statistical significance of each empirical value ESij, as defined in the 
above equation, on the basis of a null model that, for each pair (i, j), incorporates 
the same number of events as the original timeseries i and j.
Identification of specific times with high synchronization. A particular advantage of 
the similarity measure ES is that it allows for a dynamical delay τμ ν

i j,
,  within the 

range [0, τmax], in contrast to the static delay inferred from ordinary lead–lag cor-
relation analyses. Furthermore, a modification of this measure allows us to deter-
mine the specific times during which extreme-event synchronization between two 
regions of interest is high, while keeping track of the temporal order. For two sets 
of timeseries, A and B, associated with two different regions of interest, we define:

∣ ∣τ τ= ∈ × − < ≤ ∧ ≤μ μ ν μ ν μ ν
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,
,

,
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where A × B denotes the Cartesian product of sets A and B, that is, all possible 
combinations (i, j) such that i∈A and j∈B.

Hence, μ ν
→ →ES (ES )A B B A  can be viewed as a timeseries that gives for each time 

step the number of events in region A (B) that have a subsequent, uniquely asso-
ciable event in region B (A). For the example of synchronized extreme events in 
SCA and Europe that is described in the main text, we first apply a low-pass filter 
with a cutoff frequency of 10 days to the two corresponding timeseries, and then 
determine days of strong synchronization by identifying the local maxima of the 
timeseries that are above the 90th percentile of the entire timeseries. These time 
points, which occur mainly during July and August and much less frequently  
during June and September (Extended Data Fig. 4b), are then used to compute the 
composite anomalies of rainfall and meridional wind speeds shown in Fig. 4, as 
well as the composite anomalies of precipitable water, geopotential height and 
streamfunction shown in Extended Data Fig. 3.
Functional networks. Functional networks are defined as networks for which 
each link is placed in accordance with statistically similar behaviour of the two 

corresponding nodes. Usually, the nodes of a functional network are identified 
with timeseries, and links are placed between the nodes if the two correspond-
ing timeseries are strongly correlated. The connectivity structure of a dataset is 
thereby represented by the topology of the network and thus made mathematically 
accessible. In the recent past, functional-network techniques have been applied to 
analyse various properties of Earth’s climate, such as global surface-temperature 
anomalies related to the El Niño Southern Oscillation39–42, atmospheric telecon-
nections and waves43,44, regional patterns of simultaneous rainfall occurrences in 
association with frontal systems10,37, and prediction of EREs in the South American 
Andes11,38,45.
Significance tests. Significance of event synchronization and network construction. 
The statistical significance for each observed ESij value is estimated as follows. First, 
a null-model distribution is numerically obtained by computing ES for 2,000 pairs 
of surrogate event series with li and lj uniformly and randomly distributed events. 
For each pair (li, lj) of event numbers, the 99.5th percentile of the corresponding 
distribution is determined as the significance threshold. Finally, a network link is 
placed between i and j if ESij is above this threshold—that is, if it is significant 
(according to this null-model) at a significance level of 0.005. Equivalent 
approaches to construct null models for ERE synchronizations have been employed 
in previous studies10,11,37. Of course, one could also construct a null model that 
preserves the observed distribution of inter-arrival times, but this would in fact 
lead to a less restrictive statistical test11,37 because such a null model would preserve 
potential serial correlations: for each event μei  at location i, ES looks for an event 

νej  at location j such that the lead or lag between νej  and μei  is smaller than the 
absolute value of the adaptive delay τμ ν

i j,
, . But because stronger serial correlations 

lead to stronger clustering of events in each event timeseries, this would also imply 
a smaller τμ ν

i j,
,  on average. Consequently, the probability of finding an event νej  

within the range τμ ν
i j,

,  around μei  will decrease with increasing temporal clustering, 
leading to lower values of ES in the null model. Hence, the null model is more 
conservative for less-clustered events. We further note that by placing network 
links in accordance with the statistical significance of ESij, potential biases due to 
different event rates are excluded.
Significance of spatial patterns. As noted in the main text, results derived from 
data-driven interdependency analyses, and in particular the link configuration 
of functional networks, are generally biased owing to multiple comparisons. This 
problem is independent of the employed similarity measure and other technical 
details, and even persists when conditional correlations are considered, such as in 
Bayesian networks46 or causal inference studies47.

There exist, of course, various approaches to adjust the significance level of the 
pairwise significance tests, with Bonferroni’s and Sidak’s corrections being the most 
prominent ones48–50. However, these techniques do not provide a suitable solution 
to the specific multiple-comparison problem presented here: on the one hand, 
lowering the significance threshold will also exclude synchronization values that 
may be caused by physical coupling mechanisms. On the other hand, after such 
corrections, there will still remain links that are caused by random coincidences. 
In fact, when analysing large datasets, such as the TRMM satellite product with 
576,000 timeseries, it is not clear whether the fraction of links that are due to  
random coincidences would decrease when adjusting the significance level.

We suggest here a different approach to correct for biases caused by multi-
ple comparisons, which exploits the fact that the system under study is spatially 
embedded. The key idea is that links that are caused by physical mechanisms 
should exhibit spatially coherent patterns, in contrast to links caused by random 
coincidences. A Gaussian KDE of the spatial link distribution shown in Fig. 3a, 
using Scott’s rule for bandwidth selection51 and the Haversine metric to account 
for spherical embedding, reveals that there indeed exist regions with substantially 
higher link density than that found in other parts of the globe (Fig. 3b).

To construct a statistical null model for this regional link density, we first 
distribute the same number of links randomly across those grid cells that lie 
within the latitudinal belt between 50° S and 50° N and have at least three events 
above the respective percentile threshold during the study period (the non-
hatched areas in Fig. 1 for events above the 95th percentile). We then estimate 
the regional link density of the randomly distributed links in the same way as 
for the original link configuration, and repeat this procedure 1,000 times to 
obtain null-model distributions for each grid cell, which can be used to deter-
mine regions in which links form significant bundles. The means and standard 
deviations of this null-model distribution are shown in Extended Data Fig. 1. 
Specifically, we consider all grid cells with regional link density above the 99.9th 
percentile (that is, P < 0.001) of the null-model distribution to be part of a 
significant link bundle (Fig. 3b).

A comparison of the link-distance distribution of all links connected to SCA 
with the distance distribution of links that remain after correction reveals that the 
overall shape of the distribution, and in particular the scale break distinguishing 
regional weather systems from teleconnections, is not affected by our correction 
technique (red versus blue circles in Extended Data Fig. 2).
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Robustness tests. For our statistical analysis, several parameter values need to be 
determined. In this section we show that our results are robust to variations of the 
choices presented in the main text. First, we show that we obtain very similar results 
when defining EREs at the 94th or 96th percentile, instead of the 95th percentile 
(Extended Data Fig. 7). Furthermore, our results depend only weakly on different 
choices of maximum delay τmax between synchronous events, namely, τmax = 3 or 
τmax = 30 instead of τmax = 10 (Extended Data Fig. 8).

To compute the lead–lag correlations in Fig. 4a and determine times of strong 
synchronizations between SCA and Europe, a Chebycheff type I low-pass filter of 
order 8 with a cutoff period of 10 days is used to eliminate low-frequency noise. 
The results remain very similar when changing the cutoff period within a range 
of 8 to 12 days (Extended Data Fig. 9).

Finally, we test whether our results are independent of the TRMM dataset used 
here. When repeating the analysis with rainfall data from GPCP32, we obtain—
despite the substantially coarser spatial resolution of 1° instead of 0.25°—a link-dis-
tance distribution that closely resembles the one obtained for the TRMM data 
(compare Fig. 2 and Extended Data Fig. 10), including the scale break at 2,500 km 
and the super-power-law behaviour for longer distances.
Code availability. The Python code used for the analysis is available on GitHub 
(https://github.com/niklasboers/rainfall-teleconnections.git).

Data availability
The data/reanalysis that support the findings of this study are publicly available 
online: TRMM 3B42 V731, https://pmm.nasa.gov/data-access/downloads/trmm; 
GPCP 1DD V1.232, https://precip.gsfc.nasa.gov/; NCEP/NCAR Reanalysis 133, 
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.
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Extended Data Fig. 1 | Means and standard deviations of the  
null-model distribution for the regional link density. a, Mean of 
the null-model distribution for the regional link density, obtained by 
randomly redistributing the links as described in the Methods section 
‘Significance of spatial patterns’. b, Standard deviation of the same  

null-model distribution as in a. The white contour lines indicate regions 
in which the regional link density of the observations is higher than the 
99.9th percentile of the null model. Hatched areas indicate regions with 
fewer than three events in total, which are excluded from the analysis.
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Extended Data Fig. 2 | Distance distribution of extreme-event 
synchronizations, restricted to SCA. Plot of link distances (red and blue 
circles) restricted to links attached to SCA (red circles), the power-law 
fit for the range 100–2,500 km (dashed black line) and the KDE of the 

distribution of all possible great-circle distances (solid black line). The 
distance distribution of links that remain after correcting for the multiple-
comparison bias (blue circles; see Methods section ‘Significance of spatial 
patterns’) resembles the original distribution closely.
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Extended Data Fig. 3 | Extended atmospheric conditions for the 
teleconnection pattern between Europe and SCA. a–h, Composite 
anomalies of precipitable water (PRWT; a), TRMM rainfall (b), 
geopotential height (GPH; c, e, g) and streamfunction (PSI; d, f, h) at 

high (c, d), middle (e, f) and low (g, h) atmospheric levels. The anomalies 
are centred at day 3 after the maximum ERE occurrence in Europe, with 
significant subsequent counterparts in SCA. The two regions are indicated 
by magenta boxes.
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Extended Data Fig. 4 | Dependence of ERE occurrence in SCA on the 
phase of the MJO and the time of the season. a, Frequency of EREs 
in SCA over the eight phases of the MJO (blue) and corresponding 
distribution for all days during the JJA season over these phases (red).  

We note that EREs in SCA occur predominantly during phases 1 and 2.  
b, Frequency of EREs in Europe with synchronous subsequent 
counterparts in SCA over the months of June, July, August and September.
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Extended Data Fig. 5 | Distance distributions of extreme-event 
synchronizations in the tropics and extratropics. a, Link distance 
distributions for the December–January–February season are shown 
for the following cases: considering only links within the tropics 
(green squares), links within the tropics and to the extratropics of both 
hemispheres (magenta diamonds), links connecting the tropics and the 
extratropics of both hemispheres (cyan stars), links within the Northern 
Hemisphere (NH; upward red triangles) and links within the Southern 
Hemisphere (SH; downward blue triangles). b, Same as a, but for the JJA 
season. The distance distributions for all links taken together (as in Fig. 2) 

are indicated by black circles in both panels. We note that the super-
power-law part of the distribution (that is, the part of the distribution for 
distances longer than 2,500 km) is substantially suppressed if the analysis 
is restricted to the global tropics (green squares), whereas it remains strong 
if links to the extratropics are included (magenta diamonds). In particular, 
the super-power-law part is much more pronounced if only the links 
connecting the tropics with the extratropics are considered, compared 
with the distribution of all links (black circles). We also note that the 
distributions are very similar for both seasons.
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Extended Data Fig. 6 | See next page for caption.



LetterreSeArCH

Extended Data Fig. 6 | Comparison of the global distance distribution 
and teleconnection patterns in SCA for different event thresholds.  
a, Fraction of links longer than 2,500 km (blue) and median of the link-
distance distribution (orange) for different event percentile thresholds. 
Both quantities remain similar over the range of thresholds, with slight 
increases towards the strongest events. b, d, f, h, The corresponding 
distance distributions are shown for the 80th (b), 85th (d), 90th (f) and 
95th (h) percentiles for comparison. c, e, g, i, Significant link bundles 
attached to SCA are also shown for events above the 80th (c), 85th (e), 
90th (g) and 95th (i) percentiles. Links shorter (longer) than 2,500 km are 

shown in red (blue). A spherical Gaussian KDE of the regional link density, 
in combination with a null model of randomly distributed links, is used to 
determine link bundles; links that are not part of significant bundles are 
omitted (Methods section ‘Significance of spatial patterns’). Significant 
link bundles are shown by blue contours in units of standard deviations 
above the mean. The mean and the standard deviation are inferred 
from the null model of the regional link density. The black contour line 
delineates areas in which the regional link density is higher than the 99.9th 
percentile of the null-model distribution.
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Extended Data Fig. 7 | Distance distribution and teleconnection pattern 
in SCA for different extreme-event thresholds. a, c, e, Plots of link 
distances (red and blue circles), power-law fits for the range 100–2,500 km 
(dashed black lines), and KDEs of the distribution of all possible great-
circle distances (solid black lines) for EREs above the 94th (a), 95th (c)  
and 96th (e) percentile. The vertical line at d = 2,500 km marks the  
regime shift from regional weather systems to large-scale teleconnections. 
We note that the power-law exponent remains very similar over this range, 
indicating that the 1/d decay of the distance distribution is robust.  
b, d, f, Link bundles attached to SCA are shown for EREs above the 94th 
(P94; b), 95th (P95; d) and 96th (P96; f) percentile, after correcting for the 

multiple-comparison bias. Links shorter (longer) than 2,500 km are shown 
in red (blue). A spherical Gaussian KDE of the regional link density, in 
combination with a null model of randomly distributed links, is used to 
determine link bundles; links that are not part of significant bundles are 
omitted (Methods section ‘Significance of spatial patterns’). Significant 
link bundles are shown by blue contours in units of standard deviations 
above the mean. The mean and the standard deviation are inferred 
from the null model of the regional link density. The black contour lines 
delineate areas in which the regional link density is higher than the 99.9th 
percentile of the null-model distribution.
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Extended Data Fig. 8 | Distance distribution of extreme-event 
synchronizations and teleconnection pattern in SCA for different 
values of τmax. a, c, e, Plots of link distances (red and blue circles), power-
law fits for the range 100–2,500 km (dashed black lines) and KDEs of the 
distribution of all possible great-circle distances (solid black lines) for 
τmax = 3 days (a), τmax = 10 days (b) and τmax = 30 days (c). The vertical 
line at d = 2,500 km marks the regime shift from regional weather systems 
to large-scale teleconnections. We note that the distribution of significant 
link distances below 2,500 km (red circles) decays slightly faster for 
τmax = 3 days than for τmax = 10 days or τmax = 30 days, implying that 3 
days are not sufficient to capture the entire global-scale teleconnection 
pattern. b, d, f, Link bundles attached to SCA are shown for τmax = 3 days 

(b), τmax = 10 days (d) and τmax = 30 days (f), after correcting for the 
multiple-comparison bias. Links shorter (longer) than 2,500 km are shown 
in red (blue). A spherical Gaussian KDE of the regional link density, in 
combination with a null model of randomly distributed links, is used to 
determine link bundles; links that are not part of significant bundles are 
omitted (Methods section ‘Significance of spatial patterns’). Significant 
link bundles are shown by blue contours in units of standard deviations 
above the mean. The mean and the standard deviation are inferred 
from the null model of the regional link density. The black contour lines 
delineate areas in which the regional link density is higher than the 99.9th 
percentile of the null-model distribution.
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Extended Data Fig. 9 | Atmospheric conditions for the teleconnection 
pattern between Europe and SCA for different cutoff values of the 
low-pass filter. a, Lead–lag correlations (solid black line) of timeseries 
obtained from spatially averaging the daily numbers of EREs in boxes 
in Europe (EUR; 42° N to 50° N, 3° E to 15° E) and SCA. The timeseries 
are low-pass-filtered (LP) at a cutoff period of 8 days (Methods section 

‘Identification of specific times with high synchronization’). b, Composite 
anomalies of TRMM rainfall for days with high numbers of EREs in 
Europe that are followed by associated EREs in SCA. c, Same as b, but  
3 days later. d, Composite anomalies of the meridional wind component  
v at 250 hPa for the same time steps as in b. e, Same as d, but 3 days later. 
f–j, Same as a–e, but for a cutoff of 12 days.
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Extended Data Fig. 10 | Distance distribution of extreme-event 
synchronizations based on the GPCP instead of the TRMM dataset.  
Plot of link distances (red and blue circles), power-law fit for the range 
100 km–2,500 km (dashed black line) and KDE of the distribution of 
all possible great-circle distances (solid black line) for EREs above the 
95th percentile, derived from the GPCP instead of the TRMM dataset. 
The vertical line at d = 2,500 km marks the regime shift from regional 
weather systems to large-scale teleconnections. We note that in contrast 

to the TRMM data, the GPCP data extend to latitudes λ beyond 50°. 
The spatial distance that corresponds to a resolution of 1° scales with 
(111 km) × cos(λ), and therefore the distance distribution includes 
distances below 100 km. The part of the distribution that is relevant 
for comparison with that obtained from the TRMM data (Fig. 2) is for 
distances above 100 km. For smaller distances, a bias exists owing to the 
very small distances between grid cells near the poles.
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